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Lecture 13: Text generation with generative 
pretrained transformers (GPTs)



Administrivia (Various Reminders)
• Final project presentations are this Friday (recitation slot)

• The final slide deck could be modified compared to what is 
presented the Friday beforehand (e.g., to incorporate feedback)

• Final project reports are due Monday April 28, 11:59pm & consist of:

• Jupyter notebook (edited down to be clean, concise)

• Slide deck for your final project presentation

• I'm setting a hard limit of 12 minutes for your final project 
presentation

• If you go over 12 minutes, you will not receive full credit for the 
"presentation" aspect of your final project score

• I have office hours right after class today that goes until 7:30pm



(Flashback) Final Project Rubric
• Policy question (15%): what public policy question are you 

addressing? Please be clear and concise.

• Data analysis (30%): clearly state what part of your data are 
unstructured (some but not all of the data you are analyzing must 
be unstructured), and carefully justify every step of your analysis 
with supporting visualizations/intermediate outputs as needed

• Code (30%): your code should actually run!

• Conclusions (15%): come up with insights that are based on your 
quantitative data analysis and that address your original policy 
question

• Presentation (10%): how polished is your final project 
presentation? — this is based on the live presentation your group 
makes (changes made to the slides after the presentation don’t 
affect this score)



(Flashback) Final Project Rubric
• Code (30%): your code should actually run!

We recommend that you send us 2 notebooks, 1 with preprocessing 
(that saves a small, preprocessed version of the dataset) and another notebook 

that runs your analyses (using the preprocessed version of the data)

We will only run the notebook that does the analysis after loading in the 
preprocessed data (i.e., we won't recompute the preprocessed data)

If your dataset is overall small to begin with and you'd prefer just sending in a 
single notebook with the dataset, that's fine too

We don't have a strict definition of how small your preprocessed dataset is

Your code should ideally take us trivially less than 1 hour to run

Please try to make your notebooks clear & concise
(in the real world, when you ask people to look at your code notebook, 

you should've cleaned it up so that it doesn't show exhaustively everything that 
you tried… and it should also be well-documented)



Word Embeddings: 
Even without labels, we can set up 

a prediction problem!

Hide part of training data and try to predict what you’ve hid!

(Flashback)



(Flashback) Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of 
prescription and non-prescription opioid drugs in the United States and 
Canada in the 2010s.

Predict context of each word!

Training data point: opioid

“Training labels”: epidemic, or, crisis, is

Also provide “negative” examples of words that are not likely to be context 
words (by randomly sampling words elsewhere in document)

These are “positive” (correct) 
examples of what context 

words are for “opioid”



Text generation as a 
prediction problem

Just like the word2vec prediction problem: 
we set up a prediction task even though there aren't any human-

annotated ground truth labels



The opioid epidemic or opioid crisis is 
the rapid increase in the use of 
prescription and non-prescription opioid 
drugs in the United States and Canada in 
the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters 
(for simplicity; other ways to tokenize are possible)

Given ['T'], predict next token 'h'
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The opioid epidemic or opioid crisis is 
the rapid increase in the use of 
prescription and non-prescription opioid 
drugs in the United States and Canada in 
the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters 
(for simplicity; other ways to tokenize are possible)

Given ['T'], predict next token 'h'

Given ['T', 'h'], predict next token 'e'

Given ['T', 'h', 'e'], predict next token ' '

Given ['T', 'h', 'e', ' '], predict next token 'o'

…

If the string has L + 1 tokens total, then there are L such prediction tasks



Vocabulary
First, let's agree on a vocabulary to use 
(e.g., pick the unique ones seen in the dataset)

Token ID Token

0 "\n"

1 " "

2 "\""

3 "$"

⠇ ⠇

The demo has a vocabulary size of 86



'T' 'h' 'e' ' ' 'o' 'p'['T', 'h', 'e', ' ', 'o', 'p', 'i']

length = L + 1

L = 6 in this example
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# output nodes = vocab size

Keep in mind: this 
time series as a whole 
is a single data point



What is a decoder-only transformer?
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Linear layer with softmax activation, 
# output nodes = vocab size

This sort of dependence is "causal": any time step can 
only depend on its current input and all past inputs 

(and not on future time steps’ inputs)
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Another issue: the input embeddings by themselves do not 
contain information about when the time steps happened

Bad idea: have this box correspond to 
averaging the 3 input embeddings

Taking a simple average is too simplistic… 
need something more clever…

Let's address this issue first

Let’s focus on time step 2’s prediction task for the moment…
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How much should time step 1’s information contribute?

How much should time step 2’s information contribute?
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w[0] = np.dot(query[2], key[0])

w[1] = np.dot(query[2], key[1])

w[2] = np.dot(query[2], key[2])

Remember: at this point, we are only computing the 
output for time step 2

How much should time step 0’s information contribute 
(to the output for time step 2)?

Idea: make the contribution amount dependent on:

w_norm = softmax(w)

Let’s normalize the weights so they are probabilities:

Output at time step 2:
w_norm[0]*value[0] + w_norm[1]*value[1] \ 

+ w_norm[2]*value[2]
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Remember: at this point, we are only computing the 
output for time step 2

How much should time step 1’s information contribute?

How much should time step 2’s information contribute?

w[0] = np.dot(query[2], key[0])

w[1] = np.dot(query[2], key[1])

w[2] = np.dot(query[2], key[2])

Idea: make the contribution amount dependent on:

Let’s normalize the weights so they are probabilities:

w_norm[0]*value[0] + w_norm[1]*value[1] \ 
+ w_norm[2]*value[2]

w_norm = softmax(w / np.sqrt(H))

In practice: include this division (helps with training)

How much should time step 0’s information contribute 
(to the output for time step 2)?
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The hope: keys, queries, and values that 
get learned help with prediction

But what if we get unlucky and the keys, 
queries, and values found aren’t great 

(or only focus on a single concept)?

Analogy: imagine if we used a Conv2d 
layer but only used 1 filter and hoped 

that the 1 filter captures everything

The fix: use many self-attention heads

(we’re finding how much to pay attention to 
current/previous time steps of the time series)
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Example: 2 SA heads (second one is in red)
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There are a few implementation details

Basically, it turns out that when neural nets get very deep, 
training can be more difficult without some now-standard tricks 

(these tricks work with many neural net architectures, not just GPTs)

• LayerNorm 
• Residual connections 
• Dropout

Also, there are some standard strategies for initializing GPT training
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time steps from contributing

This entire box is a decoder-only transformer
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Generative Pre-trained Transformer (GPT)
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It is possible to stack transformer layers!



Generative Pre-trained Transformer (GPT)
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How to Generate Text After Model Training
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How to Get GPTs to Answer Prompts

A system like ChatGPT is trained in two phases

• First, it is “pre-trained” on a massive chunk of the internet using the 
prediction task we described already (this prediction task does not 
require any human annotations)

• Next, we “fine-tune” the model by giving it labeled training data 
showing questions & answers, and over time, we improve the 
model by letting humans scoring responses of the model

After this pre-training step, the model can randomly 
generate text but doesn’t know how to answer prompts yet 
(the model is “unaligned” with human goals at this point)

This is called “reinforcement learning with human feedback” 
(RLHF)



One more PyTorch thing…



Constructing PyTorch Models with nn.Module

Another way to write this:

deeper_model = nn.Sequential(nn.Flatten(), 
                             nn.Linear(in_features=784, out_features=512), 
                             nn.ReLU(), 
                             nn.Linear(in_features=512, out_features=10))

class DeeperModel(nn.Module): 
    def __init__(self, num_in_features, num_intermediate_features, num_out_features): 
        super().__init__() 
        self.flatten = nn.Flatten() 
        self.linear1 = nn.Linear(num_in_features, num_intermediate_features) 
        self.relu = nn.ReLU() 
        self.linear2 = nn.Linear(num_intermediate_features, num_out_features) 

    def forward(self, inputs): 
        flatten_output = self.flatten(inputs) 
        linear1_output = self.linear1(flatten_output) 
        relu_output = self.relu(linear1_output) 
        linear2_output = self.linear2(relu_output) 
        return linear2_output 

deeper_model = DeeperModel(784, 512, 10)

(we’ll need this level of detail in the next demo)
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