
94-775 Unstructured Data Analytics

Slides by George H. Chen

Lecture 13: Text generation with generative
pretrained transformers (GPTs)

Administrivia (Various Reminders)
• Final project presentations are this Friday (recitation slot)

• The final slide deck could be modified compared to what is
presented the Friday beforehand (e.g., to incorporate feedback)

• Final project reports are due Monday April 28, 11:59pm & consist of:

• Jupyter notebook (edited down to be clean, concise)

• Slide deck for your final project presentation

• I'm setting a hard limit of 12 minutes for your final project
presentation

• If you go over 12 minutes, you will not receive full credit for the
"presentation" aspect of your final project score

• I have office hours right after class today that goes until 7:30pm

(Flashback) Final Project Rubric
• Policy question (15%): what public policy question are you

addressing? Please be clear and concise.

• Data analysis (30%): clearly state what part of your data are
unstructured (some but not all of the data you are analyzing must
be unstructured), and carefully justify every step of your analysis
with supporting visualizations/intermediate outputs as needed

• Code (30%): your code should actually run!

• Conclusions (15%): come up with insights that are based on your
quantitative data analysis and that address your original policy
question

• Presentation (10%): how polished is your final project
presentation? — this is based on the live presentation your group
makes (changes made to the slides after the presentation don’t
affect this score)

(Flashback) Final Project Rubric
• Code (30%): your code should actually run!

We recommend that you send us 2 notebooks, 1 with preprocessing
(that saves a small, preprocessed version of the dataset) and another notebook

that runs your analyses (using the preprocessed version of the data)

We will only run the notebook that does the analysis after loading in the
preprocessed data (i.e., we won't recompute the preprocessed data)

If your dataset is overall small to begin with and you'd prefer just sending in a
single notebook with the dataset, that's fine too

We don't have a strict definition of how small your preprocessed dataset is

Your code should ideally take us trivially less than 1 hour to run

Please try to make your notebooks clear & concise
(in the real world, when you ask people to look at your code notebook,

you should've cleaned it up so that it doesn't show exhaustively everything that
you tried… and it should also be well-documented)

Word Embeddings:
Even without labels, we can set up

a prediction problem!

Hide part of training data and try to predict what you’ve hid!

(Flashback)

(Flashback) Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of
prescription and non-prescription opioid drugs in the United States and
Canada in the 2010s.

Predict context of each word!

Training data point: opioid

“Training labels”: epidemic, or, crisis, is

Also provide “negative” examples of words that are not likely to be context
words (by randomly sampling words elsewhere in document)

These are “positive” (correct)
examples of what context

words are for “opioid”

Text generation as a
prediction problem

Just like the word2vec prediction problem:
we set up a prediction task even though there aren't any human-

annotated ground truth labels

The opioid epidemic or opioid crisis is
the rapid increase in the use of
prescription and non-prescription opioid
drugs in the United States and Canada in
the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters
(for simplicity; other ways to tokenize are possible)

Given ['T'], predict next token 'h'

The opioid epidemic or opioid crisis is
the rapid increase in the use of
prescription and non-prescription opioid
drugs in the United States and Canada in
the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters
(for simplicity; other ways to tokenize are possible)

Given ['T'], predict next token 'h'

Given ['T', 'h'], predict next token 'e'

The opioid epidemic or opioid crisis is
the rapid increase in the use of
prescription and non-prescription opioid
drugs in the United States and Canada in
the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters
(for simplicity; other ways to tokenize are possible)

Given ['T'], predict next token 'h'

Given ['T', 'h'], predict next token 'e'

Given ['T', 'h', 'e'], predict next token ' '

The opioid epidemic or opioid crisis is
the rapid increase in the use of
prescription and non-prescription opioid
drugs in the United States and Canada in
the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters
(for simplicity; other ways to tokenize are possible)

Given ['T'], predict next token 'h'

Given ['T', 'h'], predict next token 'e'

Given ['T', 'h', 'e'], predict next token ' '

Given ['T', 'h', 'e', ' '], predict next token 'o'

The opioid epidemic or opioid crisis is
the rapid increase in the use of
prescription and non-prescription opioid
drugs in the United States and Canada in
the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters
(for simplicity; other ways to tokenize are possible)

Given ['T'], predict next token 'h'

Given ['T', 'h'], predict next token 'e'

Given ['T', 'h', 'e'], predict next token ' '

Given ['T', 'h', 'e', ' '], predict next token 'o'

…

If the string has L + 1 tokens total, then there are L such prediction tasks

Vocabulary
First, let's agree on a vocabulary to use
(e.g., pick the unique ones seen in the dataset)

Token ID Token

0 "\n"

1 " "

2 "\""

3 "$"

⠇ ⠇

The demo has a vocabulary size of 86

'T' 'h' 'e' ' ' 'o' 'p'['T', 'h', 'e', ' ', 'o', 'p', 'i']

length = L + 1

L = 6 in this example

44

60

57

1

67

68

'T'

'h'

'e'

' '

'o'

'p'

encode as
token ID

44

60

57

1

67

68

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

“Decoder-only transformer”

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

Linear layer with softmax activation,
output nodes = vocab size

44

60

57

1

67

68

'T'

'h'

'e'

' '

'o'

'p'

encode as
token ID

44

60

57

1

67

68

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

“Decoder-only transformer”

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

Linear layer with softmax activation,
output nodes = vocab size

Keep in mind: this
time series as a whole
is a single data point

What is a decoder-only transformer?

44

60

57

1

67

68

'T'

'h'

'e'

' '

'o'

'p'

encode as
token ID

44

60

57

1

67

68

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

Linear layer with softmax activation,
output nodes = vocab size

This sort of dependence is "causal": any time step can
only depend on its current input and all past inputs

(and not on future time steps’ inputs)

encode as
token ID

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

Try to predict ' '

C
la

ss
ifi

er

'T'

'h'

'e'

44

60

57

How should we combine information from the input embeddings?

Another issue: the input embeddings by themselves do not
contain information about when the time steps happened

Bad idea: have this box correspond to
averaging the 3 input embeddings

Taking a simple average is too simplistic…
need something more clever…

Let's address this issue first

Let’s focus on time step 2’s prediction task for the moment…

encode as
token ID

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

Try to predict ' '
C

la
ss

ifi
er

'T'

'h'

'e'

44

60

57

0Position:

Position: 1

2Position:

Each embedding: 1D table with D entries

a hyperparameter

encode as
token ID

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

Try to predict ' '
C

la
ss

ifi
er

'T'

'h'

'e'

44

60

57

0Position:

Position: 1

2Position:

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
+

+

+

Pink Embedding layers share the same parameters

Cyan Embedding layers share the same parameters

Each embedding: 1D table with D entries

a hyperparameter

Try to predict ' '
C

la
ss

ifi
er

Pink Embedding layers share the same parameters

Cyan Embedding layers share the same parameters

We next discuss what goes in this box

Each embedding: 1D table with D entries

encode as
token ID

Em
be

dd
in

g

'T' 44

0Position:

Em
be

dd
in

g

+

Em
be

dd
in

g

'h' 60

Position: 1

Em
be

dd
in

g

+

Em
be

dd
in

g

'e' 57

2Position:

Em
be

dd
in

g

+

a hyperparameter

encode as
token ID

Em
be

dd
in

g

'T' 44

0Position:

Em
be

dd
in

g

+

Em
be

dd
in

g

'h' 60

Position: 1

Em
be

dd
in

g

+

Em
be

dd
in

g

'e' 57

2Position:

Em
be

dd
in

g

+

encode as
token ID

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

'T'

'h'

'e'

44

60

57

0Position:

Position: 1

2Position:

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

+

+

+

Li
ne

ar
Li

ne
ar

Li
ne

ar

key

query

value

“Here's how to find me”

“Here's what I'm looking for”

“Here's my information”

Li
ne

ar
Li

ne
ar

Li
ne

ar

key

query

value
Li

ne
ar

Li
ne

ar
Li

ne
ar

key

query

value

keys/queries/values are
1D tables with the
same # entries H

key[0]

query[0]

value[0]

key[1]

query[1]

value[1]

key[2]

query[2]

value[2]

a hyperparameter

How much should time step 1’s information contribute?

How much should time step 2’s information contribute?

Li
ne

ar
Li

ne
ar

Li
ne

ar

key

query

value

Li
ne

ar
Li

ne
ar

Li
ne

ar

key

query

value

Li
ne

ar
Li

ne
ar

Li
ne

ar

key

query

value

key[0]

query[0]

value[0]

key[1]

query[1]

value[1]

key[2]

query[2]

value[2]

w[0] = np.dot(query[2], key[0])

w[1] = np.dot(query[2], key[1])

w[2] = np.dot(query[2], key[2])

Remember: at this point, we are only computing the
output for time step 2

How much should time step 0’s information contribute
(to the output for time step 2)?

Idea: make the contribution amount dependent on:

w_norm = softmax(w)

Let’s normalize the weights so they are probabilities:

Output at time step 2:
w_norm[0]*value[0] + w_norm[1]*value[1] \

+ w_norm[2]*value[2]

Output at time step 2:

Li
ne

ar
Li

ne
ar

Li
ne

ar

key

query

value

Li
ne

ar
Li

ne
ar

Li
ne

ar

key

query

value

Li
ne

ar
Li

ne
ar

Li
ne

ar

key

query

value

key[0]

query[0]

value[0]

key[1]

query[1]

value[1]

key[2]

query[2]

value[2]

Remember: at this point, we are only computing the
output for time step 2

How much should time step 1’s information contribute?

How much should time step 2’s information contribute?

w[0] = np.dot(query[2], key[0])

w[1] = np.dot(query[2], key[1])

w[2] = np.dot(query[2], key[2])

Idea: make the contribution amount dependent on:

Let’s normalize the weights so they are probabilities:

w_norm[0]*value[0] + w_norm[1]*value[1] \
+ w_norm[2]*value[2]

w_norm = softmax(w / np.sqrt(H))

In practice: include this division (helps with training)

How much should time step 0’s information contribute
(to the output for time step 2)?

encode as
token ID

Try to predict ' '
C

la
ss

ifi
er

'T'

'h'

'e'

44

60

57

0Position:

Position: 1

2Position:

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

w_norm[0]*value[0] + w_norm[1]*value[1] \
+ w_norm[2]*value[2]

1D table with H entries

This box is called a self-attention (SA) head
SA

 h
ea

d

+

+

+

The hope: keys, queries, and values that
get learned help with prediction

But what if we get unlucky and the keys,
queries, and values found aren’t great

(or only focus on a single concept)?

Analogy: imagine if we used a Conv2d
layer but only used 1 filter and hoped

that the 1 filter captures everything

The fix: use many self-attention heads

(we’re finding how much to pay attention to
current/previous time steps of the time series)

Try to predict ' '

C
la

ss
ifi

er

SA
 h

ea
d SA

 h
ea

d

encode as
token ID

'T'

'h'

'e'

44

60

57

0Position:

Position: 1

2Position:

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

+

+

+

co
nca

tenate

Self-attention (whether single or multi head)
could be thought of as gathering information

from the current & previous time steps

Rough intuition: after gathering
information, it helps to “think” on the

information gathered

Multi-head self-attention

⟹ Stick an MLP after self-attention

Example: 2 SA heads (second one is in red)

Try to predict ' '

C
la

ss
ifi

er

SA
 h

ea
d SA

 h
ea

d

encode as
token ID

'T'

'h'

'e'

44

60

57

0Position:

Position: 1

2Position:

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

+

+

+

co
nca

tenate

Self-attention (whether single or multi head)
could be thought of as gathering information

from the current & previous time steps

Rough intuition: after gathering
information, it helps to “think” on the

information gathered

Multi-head self-attention

⟹ Stick an MLP after self-attention

M
LP

Example: 2 SA heads (second one is in red)

There are a few implementation details

Basically, it turns out that when neural nets get very deep,
training can be more difficult without some now-standard tricks

(these tricks work with many neural net architectures, not just GPTs)

• LayerNorm
• Residual connections
• Dropout

Also, there are some standard strategies for initializing GPT training

C
la

ss
ifi

er

SA
 h

ea
d SA

 h
ea

d

encode as
token ID

'T'

'h'

'e'

44

60

57

0Position:

Position: 1

2Position:

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

+

+

+

co
nca

tenate

Multi-head self-attention

M
LP

La
ye

rN
or

m
La

ye
rN

or
m

La
ye

rN
or

m

+

La
ye

rN
or

m

+

“residual connections”

Dr
op

ou
t

Dr
op

ou
t

Each SA head uses Dropout to
randomly disallow some past
time steps from contributing

This entire box is a decoder-only transformer

44

60

57

1

67

68

'T'

'h'

'e'

' '

'o'

'p'

encode as
token ID

44

60

57

1

67

68

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g
Em

be
dd

in
g

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er

Linear layer with softmax activation,
output nodes = vocab size

This sort of dependence is "causal": any time step can
only depend on its current input and all past inputs

Generative Pre-trained Transformer (GPT)

44

60

57

1

67

68

'T'

'h'

'e'

' '

'o'

'p'

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er

Linear layer with softmax activation,
output nodes = vocab sizeDecoder-only

transformer
Token + position

embedding

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

D
ec

o
d

er
 T

.

44

0Position:

Token:

60

1Position:

Token:

57

2Position:

Token:

67

4Position:

Token:

1

3Position:

Token:

68

5Position:

Token:

Generative Pre-trained Transformer (GPT)

44

60

57

1

67

68

'T'

'h'

'e'

' '

'o'

'p'

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

Linear layer with softmax activation,
output nodes = vocab sizeDecoder-only

transformer
Token + position

embedding

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

D
ec

o
d

er
 T

.

44

0Position:

Token:

60

1Position:

Token:

57

2Position:

Token:

67

4Position:

Token:

1

3Position:

Token:

68

5Position:

Token:

Decoder-only
transformer

It is possible to stack transformer layers!

Generative Pre-trained Transformer (GPT)

44

60

57

1

67

68

'T'

'h'

'e'

' '

'o'

'p'

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er

Linear layer with softmax activation,
output nodes = vocab sizeDecoder-only

transformer
Token + position

embedding

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

D
ec

o
d

er
 T

.

44

0Position:

Token:

60

1Position:

Token:

57

2Position:

Token:

67

4Position:

Token:

1

3Position:

Token:

68

5Position:

Token:

How to Generate Text After Model Training

C
la

ss
ifi

er

D
ec

o
d

er
 T

.

To
ke

n/
Po

s.
 E

.

output is a probability
distribution over characters

randomly sample from this distribution
to generate next character!

'e'

start with some
initial character

'T'
44

0Position:

Token:

C
la

ss
ifi

er

D
ec

o
d

er
 T

.

To
ke

n/
Po

s.
 E

.

start with some
initial character

'T'
44

0Position:

Token:

How to Generate Text After Model Training

output is a probability
distribution over characters

randomly sample from this distribution
to generate next character!

's'

C
la

ss
ifi

er

To
ke

n/
Po

s.
 E

.

D
ec

o
d

er
 T

.
'e'

57

1Position:

Token:

Keep generating text in this manner!

How to Get GPTs to Answer Prompts

A system like ChatGPT is trained in two phases

• First, it is “pre-trained” on a massive chunk of the internet using the
prediction task we described already (this prediction task does not
require any human annotations)

• Next, we “fine-tune” the model by giving it labeled training data
showing questions & answers, and over time, we improve the
model by letting humans scoring responses of the model

After this pre-training step, the model can randomly
generate text but doesn’t know how to answer prompts yet
(the model is “unaligned” with human goals at this point)

This is called “reinforcement learning with human feedback”
(RLHF)

One more PyTorch thing…

Constructing PyTorch Models with nn.Module

Another way to write this:

deeper_model = nn.Sequential(nn.Flatten(),
 nn.Linear(in_features=784, out_features=512),
 nn.ReLU(),
 nn.Linear(in_features=512, out_features=10))

class DeeperModel(nn.Module):
 def __init__(self, num_in_features, num_intermediate_features, num_out_features):
 super().__init__()
 self.flatten = nn.Flatten()
 self.linear1 = nn.Linear(num_in_features, num_intermediate_features)
 self.relu = nn.ReLU()
 self.linear2 = nn.Linear(num_intermediate_features, num_out_features)

 def forward(self, inputs):
 flatten_output = self.flatten(inputs)
 linear1_output = self.linear1(flatten_output)
 relu_output = self.relu(linear1_output)
 linear2_output = self.linear2(relu_output)
 return linear2_output

deeper_model = DeeperModel(784, 512, 10)

(we’ll need this level of detail in the next demo)

GPT

Demo

